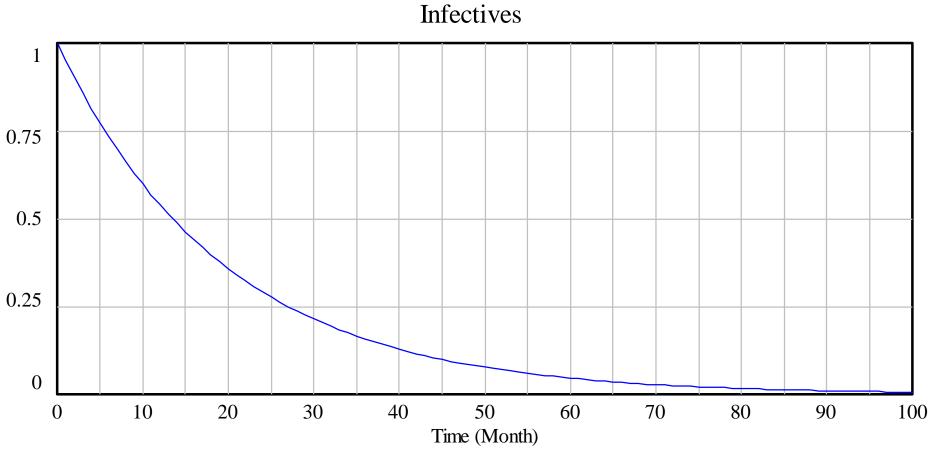
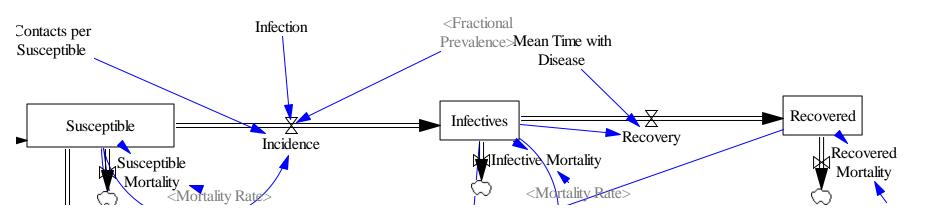

Infectious Disease Models 4: Basic Quantities of Mathematical Infectious Disease Epidemiology

Nathaniel Osgood CMPT 858 3-18-2010


Recall: Closed Population (No Birth & Death)

- Infection always dies out in the population
- Some infections will take longer to die out
- There is a "tipping point" between two cases
 - # of people infected declines out immediately
 - Infection causes an outbreak before the infection dies down (# of people infected rises and then falls)

Case 1: Outbreak

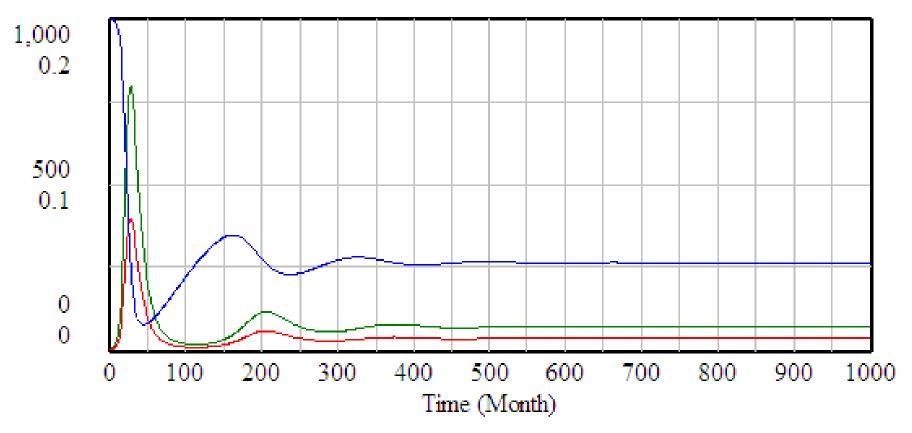


Case 2: Infection declines immediately

Infectives : Infection extinction

Recall: Simple Model Incorporating Population Turnover

Recall: Our model


- Set
 - c=10 (people/month)
 - β =0.04 (4% chance of transmission per S-I contact)
 - μ=10
 - Birth and death rate= 0
 - Initial infectives=1, other 1000 susceptible

Recall: Our model

- Set
 - c=10 (people/month)
 - β =0.04 (4% chance of transmission per S-I contact)
 - μ=10
 - Birth and death rate=0.02
 - Initial infectives=1, other 1000 susceptible

Here, the Infection Can Remain (Endemic)

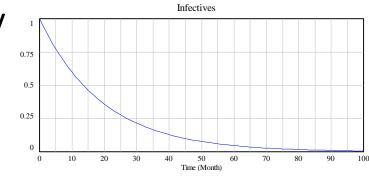
Susceptibles and Infectives

Susceptible : Alternate SIR Birth Death Infectives : Alternate SIR Birth Death Force of Infection : Alternate SIR Birth Death

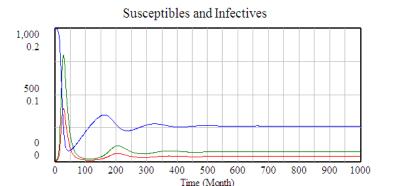
Damped Oscillatory Behavior

- Modify model to have births and deaths, with an annual birth-and-death rate
- Set Model/Settings/Final Time to 1000 (long time frame)
- In "Synthesim" ("Running man") mode, set Birth/death rates
 - 0.02
 - 0.05
 - 0.07
 - 0.01
 - -0.001

Equilibrium Behaviour


- With Births & Deaths, the system can approach an "endemic equilibrium" where the infection stays circulating in the population – but in balance
- The balance is such that (simultaneously)
 - The rate of new infections = The rate of immigration
 - Otherwise # of susceptibles would be changing!
 - The rate of new infections = the rate of recovery
 - Otherwise # of infectives would be changing!

Exploring the Tipping Point


• Now try setting transmission rate β to 0.005

Infection Extinction

- As for the case with a closed population, an open population has two cases
 - Infection dies out immediately

- Outbreak: Infection takes off
 - Here in contrast to the case for a closed population the infection will typically go to an endemic equilibrium

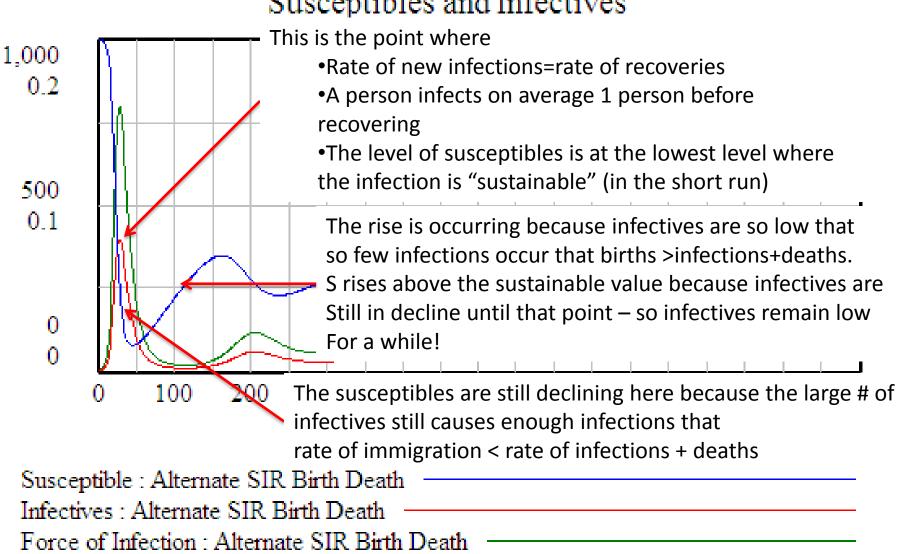


Slides Adapted from External Source Redacted from Public PDF for Copyright Reasons

Delays

- For a while after infectives start declining (i.e. susceptibles are below sustainable endemic value), they still deplete susceptibles sufficiently for susceptibles to decline
- For a while after susceptibles are rising (until susceptibles=endemic value), infectives will still decline
- For a while after infectives start rising, births > #
 of infections =>susceptibles will rise to a peak
 well above endemic level

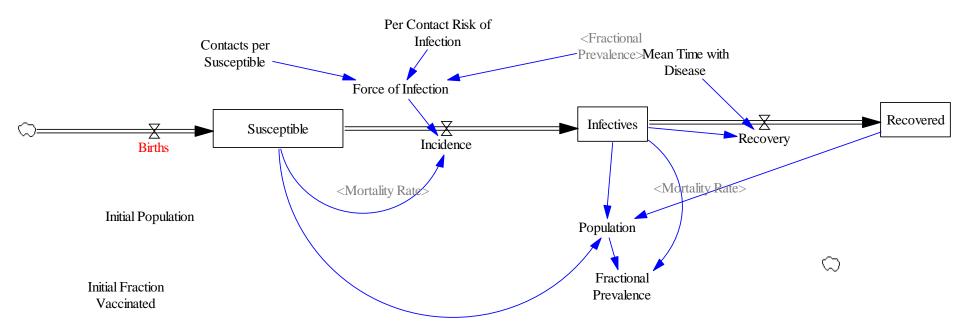
Susceptibles and Infectives



Why is the # of susceptibles still declining?

This fraction of susceptibles at endemic equilibrium is the minimum "sustainable" value of susceptible – i.e. the value where the properties above hold.

•Above this fraction of susceptibles, the # infected will rise


•Below this fraction of susceptibles, the # infected will fall

Susceptibles and Infectives

Recall: Kendrick-McKermack Model

- Partitioning the population into 3 broad categories:
 - -Susceptible (S)
 - -Infectious (I)
 - -Removed (R)

Shorthand for Key Quantities for Infectious Disease Models: Stocks

- *I* (or *Y*): Total number of infectives in population
 - This could be just one stock, or the sum of many stocks in the model (e.g. the sum of separate stocks for asymptomatic infectives and symptomatic infectives)
- N: Total size of population
 - This will typically be the sum of all the stocks of people
- S (or X): Number of susceptible individuals

- Intuition Behind Common Terms
 I/N: The Fraction of population members (or, by assumption, contacts!) that are infective
 - Important: Simplest models assume that this is also the fraction of a given susceptible's contacts that are infective! Many sophisticated models relax this assumption
- c(I/N): Number of *infectives* that come into contact with a susceptible in a given unit time
- c(I/N)β: "Force of infection": Likelihood a given susceptible will be infected per unit time
 - The idea is that if a given susceptible comes into contact with c(I/N) infectives per unit time, and if each such contact gives β likelihood of transmission of infection, then that susceptible has roughly a total likelihood of c(I/N) β of getting infected per unit time (e.g. month)

A Critical Throttle on Infection Spread: Fraction Susceptible (*f*)

- The fraction susceptible (here, S/N) is a key quantity limiting the spread of infection in a population
 - Recognizing its importance, we give this name f to the fraction of the population that issusceptible

Key Term: Flow Rate of New Infections

- This is the key form of the equation in many infectious disease models
- Total # of susceptiblesinfected per unit time # of Susceptibles * "Likelihood" a given susceptible will be infected per unit time = S*("Force of Infection") =S(c(I/N)β)
 - Note that this is a term that multiplies both S and I !
 - This is much different than the purely linear terms on which we have previously focused
 - "Likelihood" is actually a likelihood density (e.g. can be
 >1 indicating that mean time to infection is <1)

Another Useful View of this Flow

- Recall: Total # of susceptibles infected per unit time = # of Susceptibles * "Likelihood" a given susceptible will be infected per unit time = S*("Force of Infection") = S(c(I/N)β)
- The above can also be phrased as the following:S(c(I/N)β)=I(c(S/N)β)=# of Infectives * Average # susceptibles infected per unit time by each infective
- This implies that as # of susceptibles falls=># of susceptibles surrounding each infective falls=>the rate of new infections falls ("Less fuel for the fire" leads to a smaller burning rate

Recall: The Importance of Susceptible Fraction

- Recall: Total # of susceptibles infected per unit time = # of Susceptibles * "Likelihood" a given susceptible will be infected per unit time = S*("Force of Infection") = S(c(I/N)β)
- The above can also be phrased as the following:S(c(I/N)β)=I(c(S/N)β)=# of Infectives * Average # susceptibles infected per unit time by each infective
- This implies that as Fraction of susceptibles falls=>Fraction of susceptibles surrounding each infective falls=>the rate of new infections falls ("Less fuel for the fire" leads to a smaller burning rate)